ENTROPY LOSSES IN THE FLOW OF A DUST-LADEN
GAS SUSPENSION IN A NOZZLE
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The unidimensional steady-state flow of a gas containing a system of solid particles in.a
nozzle is considered for the case in which the particies are characterized by a constant

velocity lag; expressions are derived for the entropy losses in efficiency due to the fric-
tion between the gas and the particles and the irreversibility of interphase heat transfer.

The entropy losses which take place in a gas flow containing solid particles are due to viscous dissipa-
tion in the gas itself, the friction of individual particles in the boundary layers, the friction of the gas and
particles on the wall of the channel, and the irreversibility of interphase heat-transfer processes and heat
transfer between the flow and the channel walls, The frictional losses of the gas in relation to the particles
and channel walls may be regarded as (approximately) additive, since most of the particles are concentrated
close to the axis of the nozzle [1].

Let us consider the entropy losses due to the friction between the gas and the particles AE, and the
irreversibility of the interphase heat transfer AE,. In accordance with {2] we may write
T

T
AE = AE, + AE, =T, [ st T, [ @ dt. 1)

0 0

In order fo find the entropy derivatives s() and s'®) we use the model of the unidimensional steady-state
flow of a gas containing solid particles in a nozzle (with a constant velocity lag of the particles) [3], and
also the corresponding analytical solutions, which agree to within 5% with the results of more rigorous
computer calculations based on variable lag and existing experimental data. Since the model considered
in [3] makes no allowance for dissipation in the actual gas or heat transfer to the channel walls, the losses
due to these processes fail to appear in AE; and AE,. For fine particles we may put Tg—T « T, The
quantity s may be expressed in terms of a dissipative function, which takes the following form for the
model under consideration [4]

TS0 = 3 [B;(u—u) vu + G, (u— Y], @

Ipa=

i
Bj and G; are proportionality factors, and the summation extends over all the particles in the system. Flow
with a constant lag k = (u—ug)/u is characterized by a gas-velocity gradient which is constant along the
whole channel [3]

du _ a9 m _k_ (3)
dx 2 prt (1—kp

Here the first term in the dissipative function (2) vanishes. For a system of N, identical spherical particles
in unit mass of gas we may write

TS = GNuk?, @)

where
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Fig. 1. Entropy losses associated with friction (a) and with the irreversibility of inter-

phase heat transfer (b) (for the continuous curves p;/p, = 5, for the broken curves 2.5;

the figures on the curves give the values of u); AE;, AE, in kJ /kg.
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Fig. 2. Relative losses due to friction for p;/p, = 5 (figures on the curves give the
values of u); AE;/E in %.
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The law of temperature variation along the nozzle may be found from the energy equation for a polytropic
gas flow

L(l_ﬂ_):.._"’? ar. ()
dx \ 2 n—1 dx

Integrating (7) with due allowance for (3) and neglecting the velocities of the gas and particles at the entrance
into the nozzle, we have

T =T, —cxt, (8)
e An—1) ' (9)
2Rn

Let us transform to the new variable dt = dx/v in (1) by introducing the center-of-mass velocity
o M=RA 41
w1

The entropy losses AE; referred to unit mass of gas may be found from (1) allowing for (3), (6), (8), (9),
and (10):

(10)

13
AE, — 3T0gp(p+1)k2A y x 1)
4npsf“[u(1-—k)+1]0 Ty —cx?

In accordance with [1, 3-6], the quantity G may be expressed as
G == 6myyr. (12)

Carrying out the integration in (11) and allowing for the explicit form of G from (12) and A from (3), we ob-
tain

AE:M(H+1)k(1—~k)2 n_Rr l‘,_, 13
! (1 — k) + 1] n-—-lRon Ty 13)
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where
Ty = T (h) =T, —ch (14)

For calculating AE, we make use of the results of [7]

T

T

, _ 2

AE, = Toj sogr = 2 Te S ('T' T ) dt. (15)
o, T

0

A constant velocity lag leads to a constant temperature lag L {3]

Ty~ T,
Lzﬁ' (16)

From (7) and (16) we obtain
T,~T (1—=L@n—1) u

T 2nR T an
If in (15) we transform to a new variable dt = dx/v and allow for (3), (8), (9), (10), and (17), we obtain
h
- 2in— 1 .
AE2=3p.(1.L—l 1) T (1 — LY (n 1)2A3§' *%dx ' 18)
w(l— &)+ 11ro, (20RY?* ) [Ty — &P
0
Let us make use of the criteria (numbers)
Nu-——-ﬂ; Bi=%. p-2 ~ - (19)
A Ag a

The effective heat-transfer coefficient may be written in the following way, allowing for the internal thermal
resistance of the particles [8]:
=% 20
& = .
1+ ¢Bi (20)
The quantity ¢ depends on the shape of the body, but only slightly on Bi. Carrying out the integration in
(18) and remembering (3}, (9), (19), and (20), we obtain

1 Nu pp-+1)  (—LP(1 —k)? (T‘,—— T, T,
—,T : B o - 2 —n 2. 21
& »° (I+9ByPr fp(l—A41] k T, Tz) &)
Figure 1 shows the values of AE; and AE, calculated from (13) and (21) for an air—graphite suspension.

In the calculations we used cp ~ cg = 1 kJ/kg-deg, R = 287 J/kg-deg, Tj= 300K, ¢Bi « 1;n, L, Nu
were calculated in accordance with (3],

AE, =

Figure 2 shows the relative entropy losses due to the velocity lag of the particles. In calculating the
efficiency E in front of the nozzle we took T; = 800°K. The ratio Ty /T, was calculated from the polytropic
equation for the specified pressure ratio p;/p,.

NOTATION

t is the time;

is the temperature of the surrounding medium;
are the gas and particle temperatures;

are the gas and particle velocities;

is the gas-velocity gradient;

is the axial coordinate;

is the dynamic viscosity of the gas;

is the density of the particle material;

is the number of particles in unit mass of gas;
is the radius of particle;

is the mass concentration of particles;

is the polytropic index;
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ig the gas constant;

are the gas temperaturesatentrance and exit of the nozzle;
is the length of nozzle;

are the thermal conductivities of gas and particles;

are the specific heats of gas and particles;

is the heat-transfer coefficient of particles and gas;

are the kinematic viscosity and thermal diffusivity of gas;
are the gaspressuresinfront of and behind the nozzle,
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